Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C22×C6

Direct product G=N×Q with N=C2 and Q=S3×C22×C6
dρLabelID
S3×C23×C696S3xC2^3xC6288,1043


Non-split extensions G=N.Q with N=C2 and Q=S3×C22×C6
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C22×C6) = S3×C22×C12central extension (φ=1)96C2.1(S3xC2^2xC6)288,989
C2.2(S3×C22×C6) = Dic3×C22×C6central extension (φ=1)96C2.2(S3xC2^2xC6)288,1001
C2.3(S3×C22×C6) = C2×C6×Dic6central stem extension (φ=1)96C2.3(S3xC2^2xC6)288,988
C2.4(S3×C22×C6) = C2×C6×D12central stem extension (φ=1)96C2.4(S3xC2^2xC6)288,990
C2.5(S3×C22×C6) = C6×C4○D12central stem extension (φ=1)48C2.5(S3xC2^2xC6)288,991
C2.6(S3×C22×C6) = S3×C6×D4central stem extension (φ=1)48C2.6(S3xC2^2xC6)288,992
C2.7(S3×C22×C6) = C6×D42S3central stem extension (φ=1)48C2.7(S3xC2^2xC6)288,993
C2.8(S3×C22×C6) = C3×D46D6central stem extension (φ=1)244C2.8(S3xC2^2xC6)288,994
C2.9(S3×C22×C6) = S3×C6×Q8central stem extension (φ=1)96C2.9(S3xC2^2xC6)288,995
C2.10(S3×C22×C6) = C6×Q83S3central stem extension (φ=1)96C2.10(S3xC2^2xC6)288,996
C2.11(S3×C22×C6) = C3×Q8.15D6central stem extension (φ=1)484C2.11(S3xC2^2xC6)288,997
C2.12(S3×C22×C6) = C3×S3×C4○D4central stem extension (φ=1)484C2.12(S3xC2^2xC6)288,998
C2.13(S3×C22×C6) = C3×D4○D12central stem extension (φ=1)484C2.13(S3xC2^2xC6)288,999
C2.14(S3×C22×C6) = C3×Q8○D12central stem extension (φ=1)484C2.14(S3xC2^2xC6)288,1000
C2.15(S3×C22×C6) = C2×C6×C3⋊D4central stem extension (φ=1)48C2.15(S3xC2^2xC6)288,1002

׿
×
𝔽